Leveraging Al for Enhanced Cost Estimation

Matt McDonald Eric Sick

Introduction

We will discuss practical applications of Al and how Al can assist with challenges faced by Estimators with lack of information or experience.

Al as an Assistant to the Estimator

Increased Complexity is challenging estimators in providing decision makers data for decisions

Challenges /Limitations with AI AI is <u>NOT THE ANSWER</u>, but a tool to educate and a source of data to increase knowledge

Implementing Practical AI

Assess current estimation processes and identify improvement opportunities.

GALORATH

How AI can be of Value

By increasing accuracy, efficiency, and confidence of estimators who lack data

It looks like you're trying to perform a cost estimate.

Would you like help?

Al as an Assistant to the Estimator

Increased Complexity is challenging estimators in providing decision makers data for decisions

Challenges /Limitations with AI AI is <u>NOT THE ANSWER</u>, but a tool to educate and a source of data to increase knowledge

Implementing Practical AI

Assess current estimation processes and identify improvement opportunities.

GALORATH

How AI can be of Value

By increasing accuracy, efficiency, and confidence of estimators who lack data

Evolution and Benefits of AI in Cost Estimation

=

Exponential growth in capabilities is leading to transformation across all lines of business.

How AI Models feel more familiar

Bayesian Inference

Broad Applicability

 Uses ranges from heuristic to artificial networks

Statistical process

 Describes how prior knowledge can be used to predict future probabilities

Bayes Theorem

 Where predictive probability distribution of the hypothesis, given a set of data, is the product of the prior probability distribution and a likelihood function.

Describes learning, or the updating of a hypothesis given additional data

Methodology

Strengths and Weaknesses

Challenges with AI for Cost Estimators

- 1. Data Quality and Availability
- 2. Model Complexity
- 3. Bias and ethics in Al Algorithms
- 4. Integration with Existing Systems
- 5. User Trust and Adoption
- 6. Continuous Learning and Updating
- 7. Compliance Issues

Understanding the challenges with AI will help us create best practices

Practical Steps to Implement AI

- Start with Clear Objectives and Pilot Projects:
 - Define specific goals for AI integration (e.g., improve accuracy, automate data analysis).
 - Begin with pilot projects to test AI models and gather insights before scaling up.
- Ensure High-Quality Data and Continuous Monitoring:
 - Collect and cleanse comprehensive historical data to train accurate AI models.
 - Continuously monitor AI performance and update models to maintain reliability and relevance.
- Invest in Education and Integration:
 - Educate and train staff on AI technologies and their applications in cost estimation.
 - Seamlessly integrate AI tools into existing workflows to enhance efficiency without causing disruption.

How AI can be of Value

Benefits: Drive Efficiency: Reduces manual effort and saves time. Improve Accuracy: Minimizes human errors in script creation.

Benefits: Comprehensive Coverage: Ensures all aspects of the project are covered. Consistency: Maintains consistency across WBS elements.

Benefits: Precision: Enhances the precision of hardware-related cost assessments. Speed: Accelerates the estimation process

11

Al in Action - Examples

It looks like you're trying to perform a cost estimate. YES Would you like help?

- Examples of assistive data and information generated using AI.
 - Scripts
 - WBS
 - Specification Collection and Translation
- Audience Prompts

Script Example

Backup

VBA Script Example Question

"Provide Excel VBA code that will run a Monte Carlo risk simulation based on the following assumptions in the "Risk Assumptions" Tab: 1) Normal Distribution; 2) Low Point is in Cell B2; 3) Mean is in Cell C2; High Point is in Cell D2; and the number of iterations is in Cell E2. The simulation will create a new "Risk Runs" worksheet and save the values iteratively beginning in Cell B2."

Link to Example

VBA Script Example: Al response

Sub MonteCarloSimulation()

- Dim i As Long
- Dim numIterations As Long
- Dim lowPoint As Double
- Dim mean As Double
- Dim highPoint As Double
- Dim stdDev As Double
- Dim randomValue As Double
- Dim riskRunsSheet As Worksheet
- Dim riskAssumptionsSheet As Worksheet

' Set the risk assumptions sheet
Set riskAssumptionsSheet = ThisWorkbook.Sheets("Risk Assumptions")

' Read the inputs from the "Risk Assumptions" sheet lowPoint = riskAssumptionsSheet.Range("B2").Value mean = riskAssumptionsSheet.Range("C2").Value highPoint = riskAssumptionsSheet.Range("D2").Value numIterations = riskAssumptionsSheet.Range("E2").Value

' Calculate the standard deviation assuming a symmetric distribution stdDev = (highPoint - lowPoint) / 6

' Create a new "Risk Runs" worksheet

- On Error Resume Next ' Ignore error if sheet already exists
 Set riskRunsSheet = ThisWorkbook.Sheets("Risk Runs")
 If riskRunsSheet Is Nothing Then
 Set riskRunsSheet =
 ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count))
 riskRunsSheet.Name = "Risk Runs"
 Else
 riskRunsSheet.Cells.Clear ' Clear existing data if sheet already exists
 End If
- On Error GoTo 0 ' Reset error handling

' Add headers to the "Risk Runs" sheet riskRunsSheet.Range("B1").Value = "Iteration" riskRunsSheet.Range("C1").Value = "Value"

' Seed the random number generator Randomize

riskRunsSheet.Cells(i + 1, 2).Value = i
riskRunsSheet.Cells(i + 1, 3).Value = randomValue
Next i

' Autofit columns for better visibility riskRunsSheet.Columns("B:C").AutoFit

' Notify the user that the simulation is complete MsgBox "Monte Carlo risk simulation complete.", vbInformation End Sub

Non-VBA Script Example: Question

"Provide a non-VBA method in Excel that will run a Monte Carlo risk simulation based on the following assumptions in the "Risk Assumptions" Tab: 1) Normal Distribution; 2) Low Point is in Cell B2; 3) Mean is in Cell C2; High Point is in Cell D2; and the number of iterations is in Cell E2. The simulation will create a new "Risk Runs" worksheet and save the values iteratively beginning in Cell B2."

Non-VBA Script Example: Response

- 6. Generate Random Values Using Normal Distribution:
 - In cell **B2** of the "Risk Runs" worksheet, enter the following formula to generate a random value based on the normal distribution:

=NORMINV(RAND(), 'Risk Assumptions'!C2, 'Risk Assumptions'!F2)

- Drag this formula down to the number of iterations specified in cell E2 of the "Risk Assumptions" worksheet.
- "Drag this formula down to the number of iterations specified in cell E2 of the "Risk Assumptions" worksheet."
- An example of an AI "hallucination" instance when AI generates incorrect response

WBS Example

Backup

WBS Example Prompt

"I am looking to use the SEER suite of models for estimating the development of a military attack helicopter. Please act as an experienced SEER user and provide all results in SEER-compatible format. Specifically, I need the following:

- 1. Work Breakdown Structure (WBS): Provide a detailed WBS for a military attack helicopter. Use Mil Std 881 where possible
- 2. Mass Range for Each WBS Element: Estimate the mass range (least, likely, and most) for each WBS element, assuming the use of lightweight composites where appropriate and a speed exceeding 120 miles per hour.
- 3. SEER KBASES: Identify the appropriate SEER KBASES to be used for each WBS element.
- 4. Software Size Range: Estimate the software size range (least, likely, and most) for the avionics software, which should be in C++ and include up to 70% software reuse. Tie this estimate into the WBS.
- 5. Major Risks: Identify the major risks in the estimate.
- 6. Additional Questions: Provide five additional questions I should ask the Program Manager to better understand the project requirements."

WBS Prompt Example: Al response

- 1. Airframe
 - 1.1 Structure
 - 1.1.1 Fuselage
 - 1.1.2 Wings/Rotors
 - 1.1.3 Empennage
 - 1.1.4 Landing Gear
 - 1.2 Propulsion
 - 1.2.1 Engines
 - 1.2.2 Fuel System
 - 1.3 Electrical Systems
 - 1.3.1 Power Distribution
 - 1.3.2 Wiring and Connectors
 - 1.4 Avionics
 - 1.4.1 Flight Control Systems
 - 1.4.2 Navigation Systems
 - 1.4.3 Communication Systems
- 2. Mission Equipment
 - 2.1 Weapons Systems
 - 2.1.1 Guns and Ammunition
 - 2.1.2 Missiles
 - 2.2 Sensors

- 2.2.1 Radar
- 2.2.2 Electro-Optical/Infrared (EO/IR) Systems
- 3. Software Development
 - 3.1 Avionics Software
 - 3.1.1 Flight Control Software (C++)
 - 3.1.2 Navigation Software (C++)
 - 3.1.3 Communication Software (C++)
 - 3.1.4 Weapons Integration Software (C++)
- 4. Integration and Test
 - 4.1 System Integration
 - 4.2 Ground Testing
 - 4.3 Flight Testing
- 5. Support and Training
 - 5.1 Maintenance Support
 - 5.2 Training Systems
 - 5.2.1 Simulators
 - 5.2.2 Training Manuals

Mass Ranges

WDS EIEITIETTI	Least (IDS)	Likely (ibs)		
1.1 Structure	2,000	2,500	3,000	
1.1.1 Fuselage	1,000	1,200	1,400	
1.1.2 Wings/Rotors	600	800	1,000	
1.1.3 Empennage	200	300	400	
1.1.4 Landing Gear	200	200	200	
1.2 Propulsion	1,500	2,000	2,500	
1.2.1 Engines	1,200	1,500	1,800	
1.2.2 Fuel System	300	500	700	
1.3 Electrical Systems	200	300	400	
1.3.1 Power Distribution	100	150	200	
1.3.2 Wiring and Connectors	100	150	200	
1.4 Avionics	400	600	800	
I.4.1 Flight Control Systems	100	200	300	
.4.2 Navigation Systems	100	200	300	
1.4.3 Communication Systems	200	200	200	
2.1 Weapons Systems	800	1,000	1,200	
2.1.1 Guns and Ammunition	300	400	500	
2.1.2 Missiles	500	600	700	
2.2 Sensors	300	400	500	
2.2.1 Radar	150	200	250	
2.2.2 EO/IR Systems	150	200	250	
3.1 Avionics Software	N/A	N/A	N/A	
4.1 System Integration	100	150	200	
4.2 Ground Testing	100	150	200	
4.3 Flight Testing	150	200	250	
5.1 Maintenance Support	100	150	200	
5.2 Training Systems	200	300	400	
5.2.1 Simulators	150	200	250	
5.2.2 Training Manuals	50	100	150	

ALORATH

Risks

- Technical Complexity:
 - Risk: High complexity in integrating advanced avionics and weapon systems.
 - Mitigation: Conduct thorough system integration testing and employ expert system engineers.
- Schedule Delays:
 - Risk: Potential delays due to unforeseen technical challenges or supply chain issues.
 - Mitigation: Implement robust project management practices and maintain flexibility in the schedule.
- Cost Overruns:
 - Risk: Budget overruns due to underestimation of development and testing costs.
 - Mitigation: Use detailed cost estimation tools (SEER-H and SEER-SEM) and include contingency reserves.
- Software Integration:
 - Risk: Challenges in integrating reused software components with new development.
 - Mitigation: Conduct compatibility testing and ensure thorough documentation of reused components.
- Regulatory Compliance:
 - Risk: Difficulty in meeting all military and aviation regulatory requirements.
 - Mitigation: Engage with regulatory bodies early and conduct regular compliance audits.

Questions for the PM

- Scope and Requirements:
 - What are the specific mission profiles and operational requirements for the attack helicopter?
- Budget and Funding:
 - What is the allocated budget for this project, and are there any funding constraints?
- Schedule and Milestones:
 - What are the key milestones and deadlines for the project, and how flexible are these dates?
- Technology and Innovation:
 - Are there any specific technologies or innovations that must be incorporated into the helicopter design?
- Stakeholder Expectations:
 - Who are the key stakeholders, and what are their primary concerns or expectations regarding the project?

Translation Example

Backup

Spec Translation Example Prompt

"Identify by Bell 429 model and extract performance data from publicly available specifications data for the Bell 429 helicopters and place it in a table that provides data by several lift off weights for hovering altitude, cruise speed, and endurance."

Bell 429 Helicopter Performance Data

Lift-Off Weight (Ibs)	Hovering Altitude (IGE)	Hovering Altitude (OGE)	Cruise Speed (knots)	Endurance (hours)
7,000	11,000 ft	8,000 ft	150 knots	4.5 hours
6,800	11,500 ft	8,500 ft	150 knots	4.7 hours
6,500	12,000 ft	9,000 ft	152 knots	5.0 hours
6,000	12,500 ft	9,500 ft	155 knots	5.2 hours
5,500	13,000 ft	10,000 ft	157 knots	5.5 hours

Conclusion and Future Directions It is a Brave New World

AI can be an Assistant to the Estimator

Challenges must be Overcome

Implement Practical AI that works for your organization

GALORATH

Al can be an immediate force multiplier to estimators