

Guymager v0.8.1

Test Results for Disk Imaging Tool October 14, 2016

Test Results for Disk Imaging Tool: Guymager Version 0.8.1

Federated Testing Test Suite for Disk Imaging

Contents

Introduction
Introduction
How to Read This Report iv
Tool Description
Testing Organization
Results Summary
Test Environment & Selected Cases
Selected Test Cases
Test Result Details by Case
FT-DI-01
Test Case Description
Test Evaluation Criteria
Test Case Results4
Case Summary4
FT-DI-034
Test Case Description4
Test Evaluation Criteria5
Test Case Results
Case Summary5
FT-DI-155
Test Case Description
Test Evaluation Criteria5
Test Case Results
Case Summary 6
Appendix: Additional Details
Test drives and Partitions
Test Case Admin Details
Test Setup & Analysis Tool Versions

Introduction

The Computer Forensics Tool Testing (CFTT) program is a joint project of the Department of Homeland Security (DHS), the National Institute of Justice (NIJ), and the National Institute of Standards and Technology (NIST) Special Programs Office and Information Technology Laboratory (ITL). CFTT is supported by other organizations, including the Federal Bureau of Investigation, the U.S. Department of Defense Cyber Crime Center, U.S. Internal Revenue Service Criminal Investigation Division Electronic Crimes Program, and the U.S. Department of Homeland Security's Bureau of Immigration and Customs Enforcement, U.S. Customs and Border Protection and U.S. Secret Service. The objective of the CFTT program is to provide measurable assurance to practitioners, researchers, and other applicable users that the tools used in computer forensics investigations provide accurate results. Accomplishing this requires the development of specifications and test methods for computer forensics tools and subsequent testing of specific tools against those specifications.

Test results provide the information necessary for developers to improve tools, users to make informed choices, and the legal community and others to understand the tools' capabilities. The CFTT approach to testing computer forensics tools is based on well-recognized methodologies for conformance and quality testing. Interested parties in the computer forensics community can review and comment on the specifications and test methods posted on the CFTT Web site (http://www.cftt.nist.gov/).

Federated Testing is an expansion of the CFTT program to provide forensic investigators and labs with test materials for tool testing and to support shared test reports. The goal of Federated Testing is to help forensic investigators to test the tools that they use in their labs and to enable sharing of tool test results. CFTT's Federated Testing Forensic Tool Testing Environment and included test suites can be downloaded from http://www.cftt.nist.gov/federated-testing.html and used to test forensic tools. The results can be optionally shared with CFTT, reviewed by CFTT staff, and then shared with the community.

This document reports the results from testing the disk imaging function of Guymager 0.8.1 using the CFTT Federated Testing Test Suite for Disk Imaging, Version 1.0.

The Federated Testing Test Suite for Disk Imaging is flexible to allow a forensic lab to trade-off the time required to test every tool feature versus testing just the imaging tool features used by a specific lab. This report reflects testing the features that some forensic labs are likely to use on a day-to-day basis.

Test results from other tools can be found on DHS's computer forensics web page, https://www.dhs.gov/science-and-technology/nist-cftt-reports.

How to Read This Report

This report is organized into the following sections:

- 1. Tested Tool Description. The tool name, version, vendor information, support environment (e.g., operating system version, device firmware version, etc.) version are listed.
- 2. Testing Organization. Contact information and approvals.
- 3. Results Summary. This section identifies any significant anomalies observed in the test runs. This section provides a narrative of key findings identifying where the tool meets expectations and provides a summary of any ways the tool did not meet expectations. The section also provides any observations of interest about the tool or about testing the tool including any observed limitations or organization imposed restrictions on tool use.
- 4. Test Environment. Description of hardware and software used in tool testing in sufficient detail to satisfy the testing organization's policy and requirements.
- 5. Test Result Details by Case. Automatically generated test results that identify anomalies.
- 6. Appendix: Additional Details. Additional administrative details for each test case such as, who ran the test, when the test was run, computer used, etc.

Federated Testing Test Results for Disk Imaging Tool: Guymager Version 0.8.1

Tests were configured for the Following Write Block Scenarios:

Small (< 138GB) ATA drive with WiebeTech Forensic ComboDock FCDv5.5 connected to PC by FireWire interface

Large (> 138GB) ATA drive with WiebeTech Forensic ComboDock FCDv5.5 connected to PC by FireWire interface

Small (< 138GB) SATA drive with Tableau T3U connected to PC by USB interface

Large (> 138GB) SATA drive with WiebeTech Forensic ComboDock FCDv5.5 connected to PC by FireWire interface

SD drive with Digital Intelligence USB 3.0 Forensic Card Reader connected to PC by USB interface

Tool Description

Tool Name: Guymager Tool Version: 0.8.1

Operating System: BitCurator 1.6.10 DVD (bootable custom Linux distribution)

Vendor Contact:

Vendor name: Guy Voncken

Address: N/A Phone: N/A

Web: http://guymager.sourceforge.net/

Testing Organization

This test report was generated using CFTT's Federated Testing Forensic Tool Testing Environment, see Federated Testing Home Page.

Results Summary

The tested tool functioned as expected with no anomalies.

Test Environment & Selected Cases

Hardware: Dell Optiplex 980 PC with USB 2 and FireWire 400 ports.

Operating system: BitCurator 1.6.10 DVD (bootable custom Linux distribution).

Write Blockers Used in Testing

Blocker Model	Firmware Version
WiebeTech Forensic ComboDock FCDv5.5	d3.01.0030.000
Tableau T3U	Apr 11 2006 18:47:46
Digital Intelligence USB 3.0 Forensic Card Reader	N/A

Selected Test Cases

This table presents a brief description of each test case that was performed.

Test Case Status

Case	Description	Status		
FT-DI-01- ATA28	land compute selected bashes for the acquired data. Test the			
FT-DI-01- ATA48	Acquire drive of a given type using a given write blocker connected to a computer with a given interface to an image file and compute selected hashes for the acquired data. Test the ability to read a given drive type accurately and correctly hash the data while creating an image file.	completed		
FT-DI-01- SATA28	Acquire drive of a given type using a given write blocker connected to a computer with a given interface to an image file and compute selected hashes for the acquired data. Test the ability to read a given drive type accurately and correctly hash the data while creating an image file.	completed		
FT-DI-01- SATA48	Acquire drive of a given type using a given write blocker connected to a computer with a given interface to an image file and compute selected hashes for the acquired data. Test the	completed		

	ability to read a given drive type accurately and correctly hash the data while creating an image file.	
	Acquire removable media of a given type using a given media reader or write blocker connected to a computer with a given interface to an image file and compute selected hashes for the acquired data. Test the ability to read a given removable media type accurately and correctly hash the data while creating an image file.	completed
FT-DI-05- NTFS	Acquire partition of a given type to an image file and compute selected hashes for the acquired data. Test the ability to read a given partition type accurately and correctly hash the data while creating an image file.	completed
FT-DI-15	Acquire a drive with faulty sectors to a destination clone. Characterize the behavior of the imaging tool if faulty sectors are encountered.	completed

Test Result Details by Case

This section presents test results grouped by function.

FT-DI-01

Test Case Description

Acquire drive of a given type using a given write blocker connected to a computer with a given interface to an image file and compute selected hashes for the acquired data. Test the ability to read a given drive type accurately and correctly hash the data while creating an image file.

This test can be repeated to test acquisition of multiple drive types. This test tests the ability of the tool to acquire a specific type of drive (the drive type tested is included in the test case name) to an image file using a specific write blocker (applies only to tools that are used with hardware write blockers) and a certain interface connection between the test computer and the write blocker used and the interface connection between the test computer and the write blocker are listed for each test case in the table below. Two tests are required to test ATA or SATA drives, one to test drives smaller than 138GB (ATA28 & SATA28: 28-bit addressing) and one to test larger drives (ATA48 & SATA48: 48-bit addressing).

Test Evaluation Criteria

The hash values computed by the tool should match the reference hash values computed for the source drive.

Test Case Results

The following table presents results for individual test cases

Test Results for FT-DI-01 cases

Case Si		Src Blocker (interface)	Reference Hash vs Tool Hash			
			MD5	SHA1	SHA256	
FT-DI-01- ATA28	a1	Wiebetech Forensic Combodock (FCDv5.5) (firewire)	match	match	match	
FT-DI-01- ATA48	a3	Wiebetech Forensic Combodock (FCDv5.5) (firewire)	match	match	match	
FT-DI-01- SATA28	a2	Tableau T3u (usb)	match	match	match	
FT-DI-01- SATA48	a4	Wiebetech Forensic Combodock (FCDv5.5) (firewire)	match	match	match	

Case Summary

Results are as expected.

FT-DI-03

Test Case Description

Acquire removable media of a given type using a given media reader or write blocker connected to a computer with a given interface to an image file and compute selected hashes for the acquired data. Test the ability to read a given removable media type accurately and correctly hash the data while creating an image file.

This test can be repeated to test acquisition of multiple removable media types. This test tests the ability of the tool to acquire a specific type of removable media (the removable media type tested is included in the test case name) to an image file using a specific media reader that may also be a write blocker and a certain interface connection between the test computer and the media reader. The media reader used and the interface connection between the test computer and the media reader are listed for each test case in the table below.

Test Evaluation Criteria

The hash values computed by the tool should match the reference hash values computed for the source drive.

Test Case Results

The following table presents results for individual test cases

Test Results for FT-DI-03 cases

Case	Src Blocker (interface)		Refere	ence Has Hash	sh vs Tool
			MD5	SHA1	SHA256
FT-DI-03-SD	a5	Digital Intelligence UltraBlock USB 3.0 Forensic Card Reader (usb)	match	match	match

Case Summary

Results are as expected.

FT-DI-15

Test Case Description

Acquire a drive with faulty sectors to a destination clone. Characterize the behavior of the imaging tool if faulty sectors are encountered.

Test Evaluation Criteria

The results of the compare between the destination drive and the reference drive indicates the tool behavior when a drive with a faulty sector is acquired.

Bad Sector Drives for FT-DI-15 cases

Case	Drive	Bad Sectors				
FT-DI-15	ee-bad	32768 65537 98307 131079 163855 196639 229439 262271 295167 328191 360459 360460 393228 393230 425997 426000 458766 458770 491535 491540				

Test Case Results

The following table presents results for individual test cases

Test Results for FT-DI-15 cases

Case	Src	Compared	Differ
FT-DI-15	ee-bad	944304	20

Anomalies

The following table lists any observed anomalies and provides additional details.

Test Anomalies for FT-DI-15 cases

Case	Anomaly
FT-DI-15	20 sectors of the clone are different from the original Runs of differences: 32768 (1) Zero fill 65537 (1) Zero fill 98307 (1) Zero fill 131079 (1) Zero fill 163855 (1) Zero fill 196639 (1) Zero fill 229439 (1) Zero fill 229439 (1) Zero fill 262271 (1) Zero fill 295167 (1) Zero fill 328191 (1) Zero fill 383191 (1) Zero fill 393228 (1) Zero fill 393230 (1) Zero fill 425997 (1) Zero fill 426000 (1) Zero fill 458766 (1) Zero fill 458770 (1) Zero fill 491535 (1) Zero fill

Case Summary

Results are as expected. The 20 sectors that differ from the original source drive are the 20 faulty sectors that cannot be acquired.

Appendix: Additional Details

Test drives and Partitions

The following table presents the state of each source object, drive or partition, including reference hashes and known content.

Both drives and partitions are described in the table. Partitions are indicated in the *Drive* column by the notation [drive]+[partition number]. Where [drive] is the drive label and [partition number] is the partition number. For example, the first partition on drive A3 would be A3+1. The type column records either the drive type, e.g. SATA, USB, etc., or the partition type, e.g., NTFS, FAT32, etc., depending on whether a drive or a partition is being described.

Test Drives

Drive	Type	Content	Sectors	MD5	SHA1	SHA256	SHA512
a1	ata	known	156301488 (74GiB)		1072D	94853	E7C14
a2	sata	known	117231408 (55GiB)		59C5C	932DB	6933D
a2+1	ntfs	known	39104480 (18GiB)	E9076	A4F0B	0859B	EAF3C
a2+1	NTFS- FS	known	39104472 (18GiB)	EA8AD	A4943	3A284	9D6D2
a3	ata	known	312581808 (149GiB)*		A4389	A2661	21C54
a4	sata	known	312581808 (149GiB)*	_	8D1B1	27C15	16BF2
a5	sd	known	1998848 (976MiB)	28D5C	98ED5	2B93E	4E9FD

^{*} Large 48-bit address drive

Test Case Admin Details

For each test run, the test computer, the tester, the source drive, the image file drive, the destination drive, and the date the test was run are listed.

Case	Host	Blocker (PC interface)	Src	Image	Dst	Date
ft-di-01- ata28	Seven	Wiebetech Forensic Combodock (FCDv5.5) (firewire)	a1	91	none	Sun Jun 26 05:35:33 2016
ft-di-01- ata48	Seven	Wiebetech Forensic Combodock (FCDv5.5) (firewire)	a3	91	none	Sun Jun 26 03:44:33 2016
ft-di-01- sata28	Seven	Tableau T3u (usb)	a2	91	none	Sat Jun 25 18:18:25 2016

ft-di-01- sata48		Wiebetech Forensic Combodock (FCDv5.5) (firewire)	a4	91	none	Sat Jun 25 18:09:32 2016
ft-di-03- sd		Digital Intelligence UltraBlock USB 3.0 Forensic Card Reader (usb)	a5	91		Sun Jun 26 18:09:32 2016
ft-di-15	Seven	Tableau T3u (usb)	ee- err	none	de	Sun Jun 26 14:52:55 2016

Test Setup & Analysis Tool Versions

Version numbers of tools used are listed.

Setup & Analysis Tool Versions

cftt-di Version 1.16 created 11/24/15 at 11:10:20
diskwipe.c Linux Version 1.5 Created 03/20/13 at 14:23:34

Tool: @(#) ft-di-prt_test_report.py Version 1.18 created 05/03/16 at 13:25:45

OS: Darwin Version 12.6.0