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Data Science as a Paradigm
 Fundamentally, data science entails the development of 

structured datasets towards addressing research questions or 
mission requirements.

 The field of Data Science emerged in response to recent advances 
in computational data processing.  
• The significant volume, velocity, and variety of data made available 

through online platforms, applications, databases, and Internet-of-Things 
(IoT) devices makes automated data collection, modeling, and analysis a 
necessity.

 Oftentimes, organizations find themselves having access to more 
data than they are able to process.  
• There is a critical need for specialists that are able to sift through the 

“noise” in order to methodically collect, normalize, structure, and present 
useful data for stakeholders. 
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The Data Science Paradigm

 The data science process 
can be defined in several 
ways, but all definitions 
describe the same 
fundamental goals and 
desired outcomes

 The data science process is 
similar in structure to the 
cost analysis process, but 
details surrounding data 
collection/normalization, 
modeling, and analytical 
environment are important 
differentiators

Image Source: 
https://commons.wikimedia.org/wiki/File:CRISP-
DM_Process_Diagram.png, „CRISP-DM Process Diagram“, 
https://creativecommons.org/licenses/by-sa/3.0/legalcode 
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Data Science Lifecycle
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“The Data Science Process”. Chanin Nantasenamat. Towards Data Science.  
URL: https://towardsdatascience.com/the-data-science-process-a19eb7ebc41b
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Data Science in the Cost Community

Advanced Analytics Software Development ML / AI
 Development of custom 

programs and/or applications 
for advanced analytics, 
modeling/simulation, and 
data visualization 

 Database architecture, 
engineering, and 
management for 
unstructured datasets and/or 
data repositories

 Development Operations 
(DevOps) for data pipeline 
optimization as well as 
model training, testing, 
predictions, and deployment

 Automated mining of cost 
data based on pre-
selected criteria

 Statistical analysis on 
structured datasets (e.g., 
regression analysis, 
learning curve, analysis of 
variance, pairwise 
correlation, etc.)

 Automated data 
visualization using custom 
programs and/or 
applications, complete 
with interactive graphical 
user interfaces (GUIs)

 Machine Learning (ML) / 
Artificial Intelligence (AI) 
is emerging in the cost 
community as automated 
tools for selective data 
collection and predictive 
analysis.

 Natural Language 
Processing (NLP) for 
analysis of analogous 
program requirements

 Data imputation based 
on automated correlation 
and weighted regression 
analysis
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Why Should We Care?
 Modern data science methodologies and tools are vital to 

evolving data collection and management requirements.  
• Traditional cost analysis will need to incorporate elements of software 

development, Machine Learning (ML), and Artificial Intelligence (AI) for 
improved analytics. 

 It is beneficial to think of data science as a complement to cost 
analysis, rather than something that competes with it.
• Despite continued advances in computer automation and artificial 

intelligence, there will always be a need for analysts to assign value and 
interpret meaning for data outputs.

 Because cost analysts are typically skilled with statistical 
modeling and analysis, they are well postured to branch into the 
wider field of data science with complementary skillsets in 
computer programming and data visualization. 
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Traditional Cost Analysis Paradigm

 As a systematic process, cost analysis is proven to help 
acquisition stakeholders understand the financial scope involved 
in research, investment, maintenance, and disposal for a long-
term program.
• The statistical methodologies and rigor involved with defensibly projecting 

future costs – to include time phasing, regression analysis, weighted 
factors, and extrapolation of actuals – should not be discounted regarding 
the development of accurate estimates.

 Rather than viewing the traditional cost analysis paradigm as 
“dated” or “inadequate”, it is appropriate to recognize that the 
traditional paradigm remains effective – but simply does not 
include the advanced computational data processing and analysis 
workflows that newer technology can offer.

APPROVED FOR PUBLIC RELEASE 8



Traditional Cost Analysis Process

GAO: Cost Estimating and Assessment Guide: Best Practices for Developing and Managing Capital Program costs. 
URL: https://www.gao.gov/assets/gao-09-3sp.pdf
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Limitations of Traditional Cost Analysis

•Slow workflow process with little to no automation

•Tedious and repetitive tasks with high probability for human 
error

•Limited scope of available data due to slow collection cycles and 
time constraints

Manual Data 
Collection & 

Normalization

•Convoluted and/or overwhelming data fields to populate or 
review

• Inability to house very large datasets (Excel/Access)

•Limited workflow customization options using canned macro 
functions (Excel/Access)

•Limited GUI customization options using VBA code (Excel/Access)

Static Data 
Management

• Inaccurate understanding or reporting of project scope and 
requirements

• Indefensible and/or unsubstantiated inputs

•Heavily biased inputs accounting for human 
optimism/pessimism

• Inaccuracies caused by manual normalization errors

Cost Estimating 
Methodologies

APPROVED FOR PUBLIC RELEASE 10



Enterprise Data Management

 Aligned with enterprise acquisition 
process

 Data calls to define and understand 
scope of cost estimate

 Deliverables satisfy specific tasking 
(e.g., produce a Life Cycle Cost 
Estimate, Independent Cost Estimate, 
Business Case Analysis, etc.) 

 In Federal Government, data 
collection is often limited to internal 
sources and Subject Matter Expert 
elicitation

 Enterprise mission drives data 
collection/analysis

 Data team works with product 
owners to translate enterprise 
requirements to data analysis 
requirements

 Iterative work with product owners

 Define focus of research based on 
enterprise requirements and 
availability of relevant data to 
address requirements

 In Federal Government, open-source 
data collection may be a 
requirement, though in practice data 
is often collected internally

Cost Analysis Paradigm Data Science Paradigm
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Data Preparation/Modeling

 Typically uses small amounts of 
analogous and/or historical data

 Normalization of data for cost, 
quantity, and duration

 Usually uses linear or non-linear 
regression

 Utilization of tools like Microsoft 
Excel and ACEIT

 Cost estimators may be considered 
to be main drivers

 Traditionally uses larger amounts of 
unstructured datasets

 Data size requires more intensive 
data normalization

 Missing data may be imputed

 Machine learning methods such as 
neural networks, decision trees, etc. 
may be employed

 Data exploration using programming 
languages (Python, R, etc.)

 Data analyst/Data scientist line 
usually crossed with the introduction 
of machine learning

Cost Analysis Paradigm Data Science Paradigm
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Evaluation and Deployment

 Cost estimates may be iteratively 
documented, but documentation is 
largely added and finalized prior to 
stakeholder review

 Finalized estimates are presented to 
stakeholders for approval

 Deliverables are typically limited to a 
cost model and associated Microsoft 
Office files

 Documentation accompanies 
programming efforts

 More iterative presentations and 
adjustment before delivering a final 
product

 Product likely to include various 
programming files piped into a 
Independent Development 
Environment (IDE) or application that 
can integrate files into a curated 
output.

 Final product may include 
customized programs and/or web-
based tools for end-user analytics

Cost Analysis Paradigm Data Science Paradigm
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Key Takeaways

 Cost analysis and data science methodologies are based off the 
same theoretical basis

 The cost analysis paradigm usually involves direct tasking with 
smaller enterprise-owned datasets

 The data science paradigm requires more collaboration with 
enterprise stakeholders to determine how available data can 
continuously address mission requirements
• This likewise requires a wide-range of technical skillsets (programming, 

statistical modeling, analysis, visualization) to assign value and predictive 
trends to data
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Data Science Mission

1. Integration of advanced analytical techniques and programming 
expertise to provide data driven forecasting and modeling into 
cost estimates

2. Advance industry best practices in handling, modeling, and 
communicating cost data

3. Evolve past Subject Matter Expert (SME) input to focus on 
historical actuals for cost estimation

4. Transition cost estimators from data consumers to data builders
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Evolving the Current Paradigm
 Current cost estimating methodologies 

are slow, and focused heavily on 
process as opposed to decision making 
support

 The benefit of modeling from data 
allows cost estimation to provide 
quicker results without bias from SME 
input

 Processing data for analytics can be an 
automatic process where results are 
refined as a program evolves

 There exist far more defensible 
methods for forecasting then basic 
linear regressions via Monte Carlo 
simulations, which are not commonly 
used within the cost community

Cost Analysis

Advanced 
Analytics and 

Software Solutions

Data Science 
Paradigm
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Data Science Vision = Process Evolution

 Transition from ad hoc reporting to continuous analytic processes that adjust 
to changes without compromising the validity of previous estimates

 Leverage data across any relevant source, no matter the format 

 Prioritize communication of analysis over the analysis itself
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Data Science as a Service

 Construct a fully integrated data science stack for cost 
estimation efforts

 Enable cost estimators to streamline estimating 
processes and gain efficiency in targeted deliverables

 Shift focus to decision support from process 
requirements
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Developing a Data Science Curriculum

Why train instead of hire?

 Instead of competing for a limited pool of job seekers, look to the 
current employee talent pool

 “Employers are already struggling to fill Data Science and Analytics jobs, 
as evidenced by the length of time unfilled roles remain open. On 
average, DSA jobs remain open for 45 days (Markow et al., 2017)”

 Upskilling can be a much smaller investment than hiring and training a 
new worker.

 To effectively create a comprehensive data science training plan and 
maximize your outcomes, the curriculum should serve 3 functions:
• Train the workforce

• Institutionalize a knowledge management repository

• Serve as a key driver for scaling analytics
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Preliminary Curriculum Planning

• 62% of Insights Leaders have a data science 
development plan and road map in place, compared 
with only 28% of Insights Laggards and 29% of The 
Pack (Forrester, 2016)

• Identify current and future needs

• Brainstorm current and projected use cases

Data Strategy & 
Roadmap

• Determine which skills matter most for the 
organization’s aspirations (as describe in Step 1)

• Differentiate between broad skills and deep skills

Identify Required 
Skillsets

• Establish a baseline

• Identify the gaps in skillsets between the baseline and 
requirements

Gap Analysis on 
Employee Skills
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Data Science Skillsets
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Program Development

 The most effective strategies 
incorporate techniques that make the 
most of the existing internal personnel 
as well as external resources.

 Learning Environments
– L&D program

Traditional approach to upskilling a workforce

– Capability academies

– Data labs and workshops
Key for continuous development and re-
learning

Key for raising awareness

 Specialization versus generalization
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Training Considerations

 Training will take time

 Define success flexibly. Not every employee needs to 
be a master coder

 Practicality of solutions should be constantly analyzed

 Accompanying training should be a promotion of a 
data-driven culture
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